题目内容
向量
,
满足|
|=3,|
|=4,|
+
|=5,则|
-
|=
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
5
5
.分析:由|
|=3,|
|=4,|
+
|=5可得两向量
⊥
,从而得到|
-
|=|
+
|=5.
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
解答:解:由两个向量加法、减法的几何意义以及|
|=3,|
|=4,|
+
|=5,
可得|
|2+|
|2=|
+
|2
故
⊥
,即|
-
|=|
+
|
再由|
+
|=5,得到|
-
|=5
故答案为 5
| a |
| b |
| a |
| b |
可得|
| a |
| b |
| a |
| b |
故
| a |
| b |
| a |
| b |
| a |
| b |
再由|
| a |
| b |
| a |
| b |
故答案为 5
点评:本题主要考查两个向量的加减法的其几何意义,属于基础题.
练习册系列答案
相关题目