题目内容
11.设实数x,y满足$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}≥1}\\{0≤x≤1}\\{0≤y≤1}\end{array}\right.$,则x+y取得最小值时的最优解的个数是( )| A. | 1 | B. | 2 | C. | 3 | D. | 无数个 |
分析 作出不等式组对应的平面区域,利用目标函数的几何意义,求目标函数z=x+y的最小值,结合数形结合进行求解即可.
解答 解:作出不等式组对应的平面区域如图:![]()
设z=x+y,得y=-x+z,平移直线y=-x+z,
由图象可知当直线y=-x+z经过点A或B时,
直线y=-x+z的截距最小,此时z最小,
即x+y取得最小值时的最优解的个数是2个,
故选:B.
点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.
练习册系列答案
相关题目
19.若sin(θ-$\frac{π}{6}$)=$\frac{1}{4}$,$θ∈({\frac{π}{6},\frac{2π}{3}})$,则$cos({\frac{3π}{2}+θ})$的值为( )
| A. | $\frac{{\sqrt{15}+\sqrt{3}}}{8}$ | B. | $\frac{{\sqrt{15}-\sqrt{3}}}{8}$ | C. | $\frac{{-\sqrt{15}+\sqrt{3}}}{8}$ | D. | $\frac{{-\sqrt{15}-\sqrt{3}}}{8}$ |
6.已知?ABCD的三个顶点的坐标分别是A(0,1),B(1,0),C(4,3),则顶点D的坐标为( )
| A. | (3,4) | B. | (4,3) | C. | (3,1) | D. | (3,8) |