题目内容
在数列an中a1+2a2+3a3+…+nan=n(2n+1)(n∈N*(1)求数列an的通项公式;
(2)求数列{
| nan | 2n |
分析:(1)当n≥2时,根据条件得到n-1时式子的和为(n-1)(2n-1),相减得到an的通项公式,把n=1代入判断也满足;
(2)把an的通项公式代入到bn=
中得到bn的通项公式,表示出前n项的和Tn,两边都乘以
,相减得到Tn的通项即可.
(2)把an的通项公式代入到bn=
| nan |
| 2n |
| 1 |
| 2 |
解答:解:(1)n≥2时,a1+2a2+3a3+…+(n-1)an-1=(n-1)(2n-1)
∴nan=4n-1,an=4-
.
当n=1时,a1=3满足上式,
∴an=4-
(n≥1,n∈N+)
(2)记bn=
则bn=
,
∴Tn=
+
+
+…+
,
而
Tn=
+
+
+…+
+
∴
Tn=
-
,Tn=7-
∴nan=4n-1,an=4-
| 1 |
| n |
当n=1时,a1=3满足上式,
∴an=4-
| 1 |
| n |
(2)记bn=
| nan |
| 2n |
| 4n-1 |
| 2n |
∴Tn=
| 3 |
| 2 |
| 7 |
| 22 |
| 11 |
| 23 |
| 4n-1 |
| 2n |
而
| 1 |
| 2 |
| 3 |
| 22 |
| 7 |
| 23 |
| 11 |
| 24 |
| 4n-5 |
| 2n |
| 4n-1 |
| 2n+1 |
∴
| 1 |
| 2 |
| 7 |
| 2 |
| 4n+7 |
| 2n+1 |
| 4n+7 |
| 2n |
点评:考查学生会根据已知条件推出数列的通项公式,灵活运用数列的递推式得到数列的前n项的和.
练习册系列答案
相关题目