题目内容
已知向量
=(cos
.sin
),
=(cos(
+
),-sin(
+
)); 令f(x)=(
+
)2,
(1)求f(x)解析式及单调递增区间;
(2)若x∈[-
,
],求函数f(x)的最大值和最小值;
(3)若f(x)=
,求sin(x-
)的值.
| a |
| 3x |
| 4 |
| 3x |
| 4 |
| b |
| x |
| 4 |
| π |
| 3 |
| x |
| 4 |
| π |
| 3 |
| a |
| b |
(1)求f(x)解析式及单调递增区间;
(2)若x∈[-
| π |
| 6 |
| 5π |
| 6 |
(3)若f(x)=
| 5 |
| 2 |
| π |
| 6 |
分析:(1)由向量
=(cos
.sin
),
=(cos(
+
),-sin(
+
)),知f(x)=(
+
)2=
2+
2+2
•
=cos2
+sin2
x+cos2(
+
)+sin2(
+
)+2[cos
cos(
+
)-sin
sin(
+
)],由此能求出f(x)解析式及单调递增区间.
(2)由f(x)=2+2cos(x+
),x∈[-
,
],知
≤x+
≤
,由此能求出f(x)=2+2cos(x+
)的最大值和最小值.
(3)由f(x)=
,知f(x)=2+2cos(x+
)=
∴cos(x+
)=
,由此能够求出sin(x-
)的值.
| a |
| 3x |
| 4 |
| 3x |
| 4 |
| b |
| x |
| 4 |
| π |
| 3 |
| x |
| 4 |
| π |
| 3 |
| a |
| b |
| a |
| b |
| a |
| b |
=cos2
| 3x |
| 4 |
| 3 |
| 4 |
| x |
| 4 |
| π |
| 3 |
| x |
| 4 |
| π |
| 3 |
| 3x |
| 4 |
| x |
| 4 |
| π |
| 3 |
| 3x |
| x |
| x |
| 4 |
| π |
| 3 |
(2)由f(x)=2+2cos(x+
| π |
| 3 |
| π |
| 6 |
| 5π |
| 6 |
| π |
| 6 |
| π |
| 3 |
| 7π |
| 6 |
| π |
| 3 |
(3)由f(x)=
| 5 |
| 2 |
| π |
| 3 |
| 5 |
| 2 |
| π |
| 3 |
| 1 |
| 4 |
| π |
| 6 |
解答:解:(1)∵向量
=(cos
.sin
),
=(cos(
+
),-sin(
+
)),
∴f(x)=(
+
)2=
2+
2+2
•
=cos2
+sin2
x+cos2(
+
)+sin2(
+
)+2[cos
cos(
+
)-sin
sin(
+
)]
=2+2cos(x+
),
增区间是:-π+2kπ≤x+
≤2kπ,k∈Z,
∴-
+2kπ≤x≤-
+2kπ,k∈Z,
∴f(x)解析式为f(x)=2+2cos(x+
),
单调递增区间是[-
+2kπ,-
+2kπ],k∈Z.
(2)∵f(x)=2+2cos(x+
),x∈[-
,
],
∴
≤x+
≤
,
∴当x+
=
时,f(x)=2+2cos(x+
)有最大值2+
;
当x+
=
时,f(x)=2+2cos(x+
)有最小值2-
.
(3)∵f(x)=
,∴f(x)=2+2cos(x+
)=
∴cos(x+
)=
,
所以sin(x-
)=-sin(
-x)=-cos(x+
)=-
.
| a |
| 3x |
| 4 |
| 3x |
| 4 |
| b |
| x |
| 4 |
| π |
| 3 |
| x |
| 4 |
| π |
| 3 |
∴f(x)=(
| a |
| b |
| a |
| b |
| a |
| b |
=cos2
| 3x |
| 4 |
| 3 |
| 4 |
| x |
| 4 |
| π |
| 3 |
| x |
| 4 |
| π |
| 3 |
| 3x |
| 4 |
| x |
| 4 |
| π |
| 3 |
| 3x |
| x |
| x |
| 4 |
| π |
| 3 |
=2+2cos(x+
| π |
| 3 |
增区间是:-π+2kπ≤x+
| π |
| 3 |
∴-
| 4π |
| 3 |
| π |
| 3 |
∴f(x)解析式为f(x)=2+2cos(x+
| π |
| 3 |
单调递增区间是[-
| 4π |
| 3 |
| π |
| 3 |
(2)∵f(x)=2+2cos(x+
| π |
| 3 |
| π |
| 6 |
| 5π |
| 6 |
∴
| π |
| 6 |
| π |
| 3 |
| 7π |
| 6 |
∴当x+
| π |
| 3 |
| π |
| 6 |
| π |
| 3 |
| 3 |
当x+
| π |
| 3 |
| 7π |
| 6 |
| π |
| 3 |
| 3 |
(3)∵f(x)=
| 5 |
| 2 |
| π |
| 3 |
| 5 |
| 2 |
| π |
| 3 |
| 1 |
| 4 |
所以sin(x-
| π |
| 6 |
| π |
| 6 |
| π |
| 3 |
| 1 |
| 4 |
点评:本题考查平面向量的综合应用,综合性强,难度大,是高考的重点.解题时要认真审题,仔细解答,注意三角函数恒等式的灵活运用,合理地进行等价转化.
练习册系列答案
相关题目