题目内容
| OA |
| a |
| OB |
| b |
| OC |
. |
| c |
| π |
| 3 |
| CM |
| 1 |
| 2 |
| MA1 |
| BN |
| NA1 |
| OA |
| OB |
| |OC| |
(1)把向量
| AM |
| a |
| c |
| AM |
(2)把向量
| ON |
| a |
| b |
| c |
(3)求AM与ON所成角的余弦值.
分析:(1)先用
、
表示
,
,利用
=
-
表示出
,根据向量的模计算公式计算求得|
|.
(2)由
=
得N为BA1的中点,利用
=
(
+
)表示出
.
(3)利用模计算公式求出|
|,利用向量的数量积运算求出
•
,根据cos<
,
>=
求异面直线所成角的余弦值.
| a |
| c |
| OM |
| AM |
| AM |
| OM |
| OA |
| AM |
| AM |
(2)由
| BN |
| NA1 |
| ON |
| 1 |
| 2 |
| OB |
| OA1 |
| ON |
(3)利用模计算公式求出|
| ON |
| AM |
| ON |
| AM |
| ON |
| ||||
|
|
解答:解:(1)如图:
=
+
=
+
,
=
-
=
+
-
=
-
,
∵∠AOC=
,∴|
|=
=
=
;
(2)∵
=
+
=
+
,
=
,
又
=
,N为BA1的中点,
∴
=
(
+
)=
(
+
+
);
(3)三个向量之间的夹角均是
,|
|=
×
=
×
=
,
∴
•
=(-
+
)•
(
+
+
)=-
×(4+2×2×
+2×4×
)+
×(2×4×
+2×4×
+4×4)=
,
COS<
,
>=
=
=
,
故异面直线AM与ON所成的角的余弦值为
.
| OM |
| OC |
| CM |
| c |
| 1 |
| 3 |
| a |
| AM |
| OM |
| OA |
| c |
| 1 |
| 3 |
| a |
| a |
| c |
| 2 |
| 3 |
| a |
∵∠AOC=
| π |
| 3 |
| AM |
|
16+
|
4
| ||
| 3 |
(2)∵
| OA1 |
| OA |
| OC |
| c |
| a |
| OB |
| b |
又
| BN |
| NA1 |
∴
| ON |
| 1 |
| 2 |
| OB |
| OA1 |
| 1 |
| 2 |
| a |
| b |
| c |
(3)三个向量之间的夹角均是
| π |
| 3 |
| ON |
| 1 |
| 2 |
4+4+16+2×2×2×
|
| 1 |
| 2 |
| 44 |
| 11 |
∴
| AM |
| ON |
| 2 |
| 3 |
| a |
| c |
| 1 |
| 2 |
| a |
| b |
| c |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 26 |
| 3 |
COS<
| AM |
| ON |
| ||||
|
|
| ||||||
|
13
| ||
| 154 |
故异面直线AM与ON所成的角的余弦值为
13
| ||
| 154 |
点评:本题考查了用向量运算求异面直线所成的角,考查了向量的加、减、数量积运算,考查了向量的模运算公式,运算量大,计算时一定要细心.
练习册系列答案
相关题目