题目内容

等差数列{an}通项公式an=27-2n,Sn为其前n项和,则Sn最大时n的值为______.
令an≥0,,
∴27-2n≥0
n≤
27
2

∴数列{an}的前13项均为正从第14项开始全为负.
(Sn)max=S13=13×25+
1
2
×13×12
×(-2)=169
 即数列{an}的前13项和最大且最大值为169
故答案为:13
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网