题目内容

设函数fx)=(x2+axekxak∈R),已知fx)在区间(-∞,-]?和[,+∞)上单调递增,在区间(-)上单调递减.

(1)求ak的值;

(2)求函数fx)在区间[0,m](m>0)上的最大值和最小值.

解:(1)∵f′(x)=[kx2+(ak+2)x+aekx,                                                           ?

ekx>0,∴由题意知方程kx2+(ak+2)x+a=0的两根为-,.?

                                                                                      ?

解得(舍).                                                                                 ?

(2)∵f(x)在(-∞,-]和[,+∞)上递增,在[-,]上递减,

f(0)=0,f(2)=0,f(m)=(m2-2m)em.?

(ⅰ)当0<m≤2时,[f(x)]Min=f(m)=(m2-2m)em,[f(x)]Max=f(0)=0.                         ?

(ⅱ)当m≤2时,[f(x)]Min=f()=(2-2)Equation.3,[f(x)]Max=f(0)=0.        ?

(ⅲ)当m>2时,[f(x)]Min=f()=(2-2)Equation.3,[f(x)]Max=f(m)=(m2-2m)em.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网