ÌâÄ¿ÄÚÈÝ
14£®ÒÑÖªÏòÁ¿$\overrightarrow{a}$=£¨2cos$\frac{¦Øx}{2}$£¬$\sqrt{3}$sin$\frac{¦Øx}{2}$£©£¬$\overrightarrow{b}$=£¨cos$\frac{¦Øx}{2}$£¬2cos$\frac{¦Øx}{2}$£©£¬£¨¦Ø£¾0£©£¬É躯Êýf£¨x£©=$\overrightarrow{a}$•$\overrightarrow{b}$£¬ÇÒf£¨x£©µÄ×îСÕýÖÜÆÚΪ¦Ð£®£¨1£©Çóº¯Êýf£¨x£©µÄ±í´ïʽ£»
£¨2£©Çóf£¨x£©µÄµ¥µ÷µÝÔöÇø¼ä£®
·ÖÎö £¨1£©´úÈëÏòÁ¿ÊýÁ¿»ý¹«Ê½£¬Ò׵õ½º¯ÊýµÄ½âÎöʽ£¬¸ù¾Ýf£¨x£©µÄ×îСÕýÖÜÆÚΪ¦Ð£¬Ò׵õ½¦ØµÄÖµ£»
£¨2£©¸ù¾Ý£¨1£©µÄ½áÂÛ£¬¸ù¾ÝÕýÏÒÐͺ¯ÊýµÄµ¥µ÷ÐÔµÄÈ·¶¨·½·¨£¬¼´¿ÉµÃµ½f£¨x£©µÄµ¥µ÷ÔöÇø¼ä£®
½â´ð ½â£º£¨1£©ÏòÁ¿$\overrightarrow{a}$=£¨2cos$\frac{¦Øx}{2}$£¬$\sqrt{3}$sin$\frac{¦Øx}{2}$£©£¬$\overrightarrow{b}$=£¨cos$\frac{¦Øx}{2}$£¬2cos$\frac{¦Øx}{2}$£©£¬£¨¦Ø£¾0£©£¬
Ôòº¯Êýf£¨x£©=$\overrightarrow{a}$•$\overrightarrow{b}$=2cos2$\frac{¦Øx}{2}$+2$\sqrt{3}$sin$\frac{¦Øx}{2}$•cos$\frac{¦Øx}{2}$=cos¦Øx+1+$\sqrt{3}$sin¦Øx=2sin£¨¦Øx+$\frac{¦Ð}{6}$£©+1£¬
¡ßf£¨x£©µÄ×îСÕýÖÜÆÚΪ¦Ð£¬
¡à¦Ð=$\frac{2¦Ð}{¦Ø}$£®½âµÃ¦Ø=2£¬
¡àf£¨x£©=2sin£¨2x+$\frac{¦Ð}{6}$£©+1£»
£¨2£©Áî-$\frac{¦Ð}{2}$+2k¦Ð¡Ü2x+$\frac{¦Ð}{6}$¡Ü$\frac{¦Ð}{2}$+2k¦Ð£¬k¡ÊZ£¬
¼´-$\frac{¦Ð}{3}$+k¦Ð¡Üx¡Ü$\frac{¦Ð}{6}$+k¦Ð£¬k¡ÊZ£¬
¡àf£¨x£©µÄµ¥µ÷µÝÔöÇø¼äΪ[-$\frac{¦Ð}{3}$+k¦Ð£¬$\frac{¦Ð}{6}$+k¦Ð]£¬k¡ÊZ£®
µãÆÀ ±¾Ì⿼²éµÄ֪ʶµãÊÇÕýÏÒº¯ÊýµÄµ¥µ÷ÐÔ£¬Èý½Çº¯ÊýµÄÖÜÆÚÐÔ¼°ÆäÇ󷨣¬ÆäÖиù¾ÝÒÑÖªÌõ¼þ½áºÏÆ½ÃæÏòÁ¿µÄÊýÁ¿»ýÔËË㹫ʽ£¬µÃµ½º¯ÊýµÄ½âÎöʽ£¬Êǽâ´ð±¾ÌâµÄ¹Ø¼ü£®
| A£® | £¨1£¬2£© | B£® | £¨0£¬2£© | C£® | £¨1£¬1£© | D£® | £¨1£¬-2£© |
| A£® | x¡Ù0ÇÒy¡Ù0 | B£® | x=0ÇÒy¡Ù0 | C£® | x¡Ù0»òy¡Ù0 | D£® | x=0»òy=0 |
| A£® | i¡Ü7£¿ | B£® | i¡Ü6£¿ | C£® | i¡Ý6£¿ | D£® | i¡Ý7£¿ |
| A£® | $\frac{1}{4}$ | B£® | $\frac{1}{3}$ | C£® | $\frac{1}{2}$ | D£® | $\frac{2}{3}$ |
| A£® | a£¾b£¾c | B£® | a£¾c£¾b | C£® | c£¾a£¾b | D£® | c£¾b£¾a |