题目内容
22已知函数
,若方程
有且只有两个相异根0和2,且
(1)求函数
的解析式。(2)已知各项不为1的数列{an}满足
,求数列通项an。(3)如果数列{bn}满足
,求证:当
时,恒有
成立。
(Ⅰ)
(Ⅱ)
(Ⅲ)略
解析:
:(1)设
∵0,2是方程
的根
∴
∴
∴![]()
由
得
∵
∴
∴![]()
(2)由已知
整理得![]()
∴
二式相减得![]()
若
则当n=1时,
(舍0)
则
不合题意舍 若
则{an}为首项-1,公差为-1的等差数列
满足
∴![]()
(3)由![]()
∴
时,![]()
∴
若
显然
成立
若
,
时 则![]()
∴{bn}在
时单调递减∵
∴![]()
练习册系列答案
相关题目
己知在锐角ΔABC中,角
所对的边分别为
,且![]()
(I )求角
大小;
(II)当
时,求
的取值范围.
![]()
20.如图1,在平面内,
是
的矩形,
是正三角形,将
沿
折起,使
如图2,
为
的中点,设直线
过点
且垂直于矩形
所在平面,点
是直线
上的一个动点,且与点
位于平面
的同侧。
(1)求证:
平面
;
(2)设二面角
的平面角为
,若
,求线段
长的取值范围。
![]()
![]()
21.已知A,B是椭圆
的左,右顶点,
,过椭圆C的右焦点F的直线交椭圆于点M,N,交直线
于点P,且直线PA,PF,PB的斜率成等差数列,R和Q是椭圆上的两动点,R和Q的横坐标之和为2,RQ的中垂线交X轴于T点
(1)求椭圆C的方程;
(2)求三角形MNT的面积的最大值
22. 已知函数
,
(Ⅰ)若
在
上存在最大值与最小值,且其最大值与最小值的和为
,试求
和
的值。
(Ⅱ)若
为奇函数:
(1)是否存在实数
,使得
在
为增函数,
为减函数,若存在,求出
的值,若不存在,请说明理由;
(2)如果当
时,都有
恒成立,试求
的取值范围.