题目内容
已知数列{an},{bn}满足a1=
,an+bn=1,bn+1=
,则b2012=( )
| 1 |
| 2 |
| bn |
| 1-an2 |
分析:根据数列递推式,判断{
}是以-2为首项,-1为公差的等差数列,即可求得数列的通项,从而可求结论.
| 1 |
| bn-1 |
解答:解:∵an+bn=1,bn+1=
,
∴bn+1=
=
∴bn+1-1=
∴
-
=-1
∵
=
=-2
∴{
}是以-2为首项,-1为公差的等差数列
∴
=-2+(n-1)×(-1)=-n-1
∴bn=
∴b2012=
故选C.
| bn |
| 1-an2 |
∴bn+1=
| 1 |
| 1+an |
| 1 |
| 2-bn |
∴bn+1-1=
| bn-1 |
| 2-bn |
∴
| 1 |
| bn+1-1 |
| 1 |
| bn-1 |
∵
| 1 |
| b1-1 |
| 1 |
| -a1 |
∴{
| 1 |
| bn-1 |
∴
| 1 |
| bn-1 |
∴bn=
| n |
| n+1 |
∴b2012=
| 2012 |
| 2013 |
故选C.
点评:本题考查数列递推式,解题的关键是判定{
}是以-2为首项,-1为公差的等差数列,属于中档题.
| 1 |
| bn-1 |
练习册系列答案
相关题目