题目内容
已知函数f(x)=
,数列{an}满足a1=1,an+1=f(an)(n∈N*)
(1)求证:数列{
}是等差数列;
(2)记Sn(x)=
+
+…+
,求Sn(x).
| x |
| 3x+1 |
(1)求证:数列{
| 1 |
| an |
(2)记Sn(x)=
| x |
| a1 |
| x2 |
| a2 |
| xn |
| an |
(1)由已知得:an+1=
,
=
=3+
∴
-
=3
∴{
}是首项为1,公差d=3的等差数列
(2)由(1)得
=1+(n-1)3=3n-2
∴Sn(x)=x+4x2+7x3+…+(3n-5)xn-1+(3n-2)xn
当x=1,Sn(1)=1+4+7+…+(3n-2)=
•n=
当x≠1,0时,Sn(x)=x+4x2+7x3+…+(3n-5)xn-1+(3n-2)xn
xSn(x)=x2+4x3+7x4+…+(3n-5)xn+(3n-2)xn+1
(1-x)Sn(x)=x+(3x2+3x3+…+3xn)-(3n-2)xn+1
=x+
-(3n-2)xn+1
∴Sn(x)=
+
=
=
=
当x=0时,Sn(0)=0也适合.
综上所述,x=1,Sn(1)=
x≠1,Sn(x)=
.
| an |
| 3an+1 |
| 1 |
| an+1 |
| 3an+1 |
| an |
| 1 |
| an |
∴
| 1 |
| an+1 |
| 1 |
| an |
∴{
| 1 |
| an |
(2)由(1)得
| 1 |
| an |
∴Sn(x)=x+4x2+7x3+…+(3n-5)xn-1+(3n-2)xn
当x=1,Sn(1)=1+4+7+…+(3n-2)=
| 1+3n-2 |
| 2 |
| n(3n-1) |
| 2 |
当x≠1,0时,Sn(x)=x+4x2+7x3+…+(3n-5)xn-1+(3n-2)xn
xSn(x)=x2+4x3+7x4+…+(3n-5)xn+(3n-2)xn+1
(1-x)Sn(x)=x+(3x2+3x3+…+3xn)-(3n-2)xn+1
=x+
| 3x2(1-xn-1) |
| 1-x |
∴Sn(x)=
| x-(3n-2)xn+1 |
| 1-x |
| 3x2(1-xn-1) |
| (1-x)2 |
| x(1-x)-(3n-2)xn+1(1-x)+3x2(1-xn-1) |
| (1-x)2 |
=
| (3n-2)xn+2-(3n-2)xn+1+x-x2+3x2-3xn+1 |
| (1-x)2 |
=
| (3n-2)xn+2-(3n+1)xn+1+2x2+x |
| (1-x)2 |
当x=0时,Sn(0)=0也适合.
综上所述,x=1,Sn(1)=
| n(3n-1) |
| 2 |
x≠1,Sn(x)=
| (3n-2)xn+2-(3n+1)xn+1+2x2+x |
| (1-x)2 |
练习册系列答案
相关题目
| π |
| 2 |
A、f(x)=2sin(πx+
| ||
B、f(x)=2sin(2πx+
| ||
C、f(x)=2sin(πx+
| ||
D、f(x)=2sin(2πx+
|