题目内容
20.已知a1=$\frac{1}{4}$(1-$\frac{1}{3}$),a2=$\frac{1}{4}$($\frac{1}{3}$-$\frac{1}{5}$),a3=$\frac{1}{4}$($\frac{1}{5}$-$\frac{1}{7}$),a4=$\frac{1}{4}$($\frac{1}{7}$-$\frac{1}{9}$),…,以此类推a1+a2+a3+…+a1008的值为$\frac{504}{2017}$.分析 由题意可得an=$\frac{1}{4}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),即可求出a1+a2+a3+…+a1008的和.
解答 解:a1=$\frac{1}{4}$(1-$\frac{1}{3}$),
a2=$\frac{1}{4}$($\frac{1}{3}$-$\frac{1}{5}$),
a3=$\frac{1}{4}$($\frac{1}{5}$-$\frac{1}{7}$),
a4=$\frac{1}{4}$($\frac{1}{7}$-$\frac{1}{9}$),
…,
可以归纳an=$\frac{1}{4}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),
a1+a2+a3+…+a1008=$\frac{1}{4}$[(1-$\frac{1}{3}$)+($\frac{1}{3}$-$\frac{1}{5}$)+($\frac{1}{5}$-$\frac{1}{7}$)+($\frac{1}{7}$-$\frac{1}{9}$)+…+($\frac{1}{2×1008-1}$-$\frac{1}{2×1008+1}$)]=$\frac{1}{4}$(1-$\frac{1}{2017}$)=$\frac{504}{2017}$;
故答案为:$\frac{504}{2017}$
点评 本题考查了归纳推理的问题,关键是找出通项公式,属于中档题.
练习册系列答案
相关题目
15.已知F1、F2分别是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点.若直线l:x=-$\frac{{a}^{2}}{c}$上存在点P,使得线段PF2的中垂线与x轴交点在椭圆内部,则椭圆C离心率的取值范围是( )
| A. | (0,1) | B. | (0,$\sqrt{2}$-1) | C. | ($\sqrt{2}$-1,1) | D. | (2-$\sqrt{2}$,1) |
9.实数x,y满足条件$\left\{\begin{array}{l}{x≥1}\\{x+y≤3}\\{-2x+3y+5≥0}\end{array}\right.$,则目标函数z=x+2y的最大值为( )
| A. | 5 | B. | 4 | C. | -1 | D. | $\frac{16}{5}$ |