题目内容
f(x)=3sin(ωx+
),ω>0,x∈(-∞,+∞),且以
为最小周期.
(1)求f(0);
(2)求f(x)的解析式;
(3)已知f(
+
)=
,求sinα的值.
| π |
| 6 |
| π |
| 2 |
(1)求f(0);
(2)求f(x)的解析式;
(3)已知f(
| α |
| 4 |
| π |
| 12 |
| 9 |
| 5 |
(1)f(0)=3sin(ω•0+
)=3×
=
,
(2)∵T=
=
∴ω=4
所以f(x)=3sin(4x+
).
(3)f(
+
)=3sin[4(
+
)+
]=3sin(α+
)=
∴cosα=
∴sinα=±
=±
| π |
| 6 |
| 1 |
| 2 |
| 3 |
| 2 |
(2)∵T=
| 2π |
| ω |
| π |
| 2 |
所以f(x)=3sin(4x+
| π |
| 6 |
(3)f(
| α |
| 4 |
| π |
| 12 |
| α |
| 4 |
| π |
| 12 |
| π |
| 6 |
| π |
| 2 |
| 9 |
| 5 |
∴cosα=
| 3 |
| 5 |
∴sinα=±
| 1-cos2α |
| 4 |
| 5 |
练习册系列答案
相关题目
函数f(x)=3sin(x+100)+5sin(x+700)的最大值是( )
| A、5.5 | B、6.5 | C、7 | D、8 |