题目内容

已知函数f(x)=x3+ax2+x+2(a>0)的极大值点和极小值点都在区间(-1,1)内,则实数a的取值范围是


  1. A.
    (0,2]
  2. B.
    (0,2)
  3. C.
    [数学公式,2)
  4. D.
    数学公式
D
分析:求导函数,则问题转化为方程3x2+2ax+1=0的根都在区间(-1,1)内,构造函数g(x)=3x2+2ax+1,即可求得实数a的取值范围.
解答:求导函数,可得f′(x)=3x2+2ax+1
则由题意,方程3x2+2ax+1=0的两个不等根都在区间(-1,1)内,
构造函数g(x)=3x2+2ax+1,则

∴实数a的取值范围是
故选D.
点评:本题考查导数知识的运用,考查函数的极值,考查方程根的研究,解题的关键是问题转化为方程3x2+2ax+1=0的根都在区间(-1,1)内.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网