题目内容

在△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,且满足cos
A
2
=
2
5
5
AB
AC
=3,b+c=6
(I)求a的值;
(II)求
2sin(A+
π
4
)sin(B+C+
π
4
)
1-cos2A
的值.
(I)∵cos
A
2
=
2
5
5

∴cosA=2cos2
A
2
-1=
3
5

AB
AC
=3,即bccosA=3,
∴bc=5,又b+C=6,
∴b=5,c=1或b=1,c=5,
由余弦定理得:a2=b2+c2-2bccosA=20,
∴a=2
5

(II)
2sin(A+
π
4
)sin(B+C+
π
4
)
1-cos2A

=
2sin(A+
π
4
)sin(π-A+
π
4
)
1-cos2A
=
2sin(A+
π
4
)sin(A-
π
4
)
1-cos2A

=
2sin(A+
π
4
)cos[
π
2
-(A-
π
4
)]
1-cos2A
=
-2sin(A+
π
4
)cos(A+
π
4
)
1-cos2A

=-
sin(2A+
π
2
)
1-cos2A
=-
cos2A
1-cos2A

∴cosA=
3
5
,∴cos2A=2cos2A-1=-
7
25

∴原式=-
-
7
25
1+
7
25
=
7
32
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网