题目内容
已知双曲线![]()
的渐近线方程为
,则以它的顶点为焦点,焦点为顶点的椭圆的离心率等于( )
| A. | B. | C. | D.1 |
A
解析试题分析:
双曲线的焦点在
轴上,又渐近线方程为
,可设
,则
,
由题意知在椭圆中
,所以该椭圆的离心率等于
。
考点:(1)椭圆、双曲线离心率的求法;(2)椭圆、双曲线中
的三者关系。
练习册系列答案
相关题目
已知抛物线
的准线与双曲线![]()
交于
两点,点
为抛物线的焦点,若
为直角三角形,则双曲线的离心率是( )
| A. | B. | C.2 | D.3 |
已知双曲线![]()
的渐近线方程为
,则以它的顶点为焦点,焦点为顶点的椭圆的离心率等于( )
| A. | B. | C. | D.1 |
抛物线
的焦点坐标是( ) .
| A. | B. | C. | D. |
直线l过抛物线C:x2=4y的焦点且与y轴垂直,则l与C所围成的图形的面积等于( )
| A. | B.2 | C. | D. |
设F(1,0),M点在x轴上,P点在y轴上,且
=2
,
⊥
,当点P在y轴上运动时,点N的轨迹方程为( )
| A.y2=2x | B.y2=4x |
| C.y2= | D.y2= |