题目内容
(1)证明:EM⊥BF;
(2)求平面BEF与平面ABC所成的锐二面角的余弦值.
【答案】分析:(1)根据线面垂直得到线与线垂直,根据直径所对的圆周角是直角,得到两个三角形是等腰直角三角形,有线面垂直得到结果.
(2)做出辅助线,延长EF交AC于G,连BG,过C作CH⊥BG,连接FH.,做出∠FHC为平面BEF与平面ABC所成的二面角的平面角,求出平面角.
解答:
解:(1)证明:∵EA⊥平面ABC,BM?平面ABC,∴EA⊥BM.
又∵BM⊥AC,EA∩AC=A,∴BM⊥平面ACFE,
而EM?平面ACFE,∴BM⊥EM.∵AC是圆O的直径,∴∠ABC=90°.
又∵∠BAC=30°,AC=4,∴
,AM=3,CM=1.∵EA⊥平面ABC,FC∥EA,
∴FC⊥平面ABC.∴△EAM与△FCM都是等腰直角三角形.
∴∠EMA=∠FMC=45°.∴∠EMF=90°,即EM⊥MF(也可由勾股定理证得).
∵MF∩BM=M,∴EM⊥平面MBF.
而BF?平面MBF,∴EM⊥BF.
(2)延长EF交AC于G,连BG,过C作CH⊥BG,连接FH.由(1)知FC⊥平面ABC,BG?平面ABC,∴FC⊥BG.
而FC∩CH=C,∴BG⊥平面FCH.∵FH?平面FCH,∴FH⊥BG,∴∠FHC为平面BEF与平面ABC所成的
二面角的平面角.(8分)
在Rt△ABC中,∵∠BAC=30°,AC=4,
∴
.
由
,得GC=2.∵
.
又∵
,∴
,则
.(12分)
∴△FCH是等腰直角三角形,∠FHC=45°.∴平面BEF与平面ABC所成的锐二面角的余弦值为
.
点评:本题主要考查空间点、线、面位置关系,二面角等基础知识,考查应用向量知识解决数学问题的能力,考查空间想象能力、运算能力和推理论证能力.
(2)做出辅助线,延长EF交AC于G,连BG,过C作CH⊥BG,连接FH.,做出∠FHC为平面BEF与平面ABC所成的二面角的平面角,求出平面角.
解答:
又∵BM⊥AC,EA∩AC=A,∴BM⊥平面ACFE,
而EM?平面ACFE,∴BM⊥EM.∵AC是圆O的直径,∴∠ABC=90°.
又∵∠BAC=30°,AC=4,∴
∴FC⊥平面ABC.∴△EAM与△FCM都是等腰直角三角形.
∴∠EMA=∠FMC=45°.∴∠EMF=90°,即EM⊥MF(也可由勾股定理证得).
∵MF∩BM=M,∴EM⊥平面MBF.
而BF?平面MBF,∴EM⊥BF.
(2)延长EF交AC于G,连BG,过C作CH⊥BG,连接FH.由(1)知FC⊥平面ABC,BG?平面ABC,∴FC⊥BG.
而FC∩CH=C,∴BG⊥平面FCH.∵FH?平面FCH,∴FH⊥BG,∴∠FHC为平面BEF与平面ABC所成的
二面角的平面角.(8分)
在Rt△ABC中,∵∠BAC=30°,AC=4,
∴
由
又∵
∴△FCH是等腰直角三角形,∠FHC=45°.∴平面BEF与平面ABC所成的锐二面角的余弦值为
点评:本题主要考查空间点、线、面位置关系,二面角等基础知识,考查应用向量知识解决数学问题的能力,考查空间想象能力、运算能力和推理论证能力.
练习册系列答案
相关题目