题目内容
14.分析 由已知条件推导出△ACE≌△BCD,从而∠DBC=∠CAE,再通过角之间的转化,利用三角形内角和定理能求出∠AEB的度数.
解答 解:∵△ABC和△CDE都是等边三角形,且∠EBD=62°,
∴AC=BC,CE=CD,∠ACB=∠ECD=60°,
又∵∠ACB=∠ACE+∠BCE,∠ECD=∠BCE+∠BCD,
∴∠BCD=∠ACE,△ACE≌△BCD,
∴∠DBC=∠CAE,
∴62°-∠EBC=60°-∠BAE,
∴62°-(60°-∠ABE)=60°-∠BAE,
∴∠AEB=180°-(∠ABE+∠BAE)=180°-58°=122°.
故答案为:122°.
点评 本题考查角的大小的求法,是基础题,解题时要注意等边三角形的性质、三角形全等的性质和三角形内角和定理的合理运用.
练习册系列答案
相关题目
19.双曲线$\frac{{x}^{2}}{25-k}$+$\frac{{y}^{2}}{9-k}$=1的焦距为( )
| A. | 16 | B. | 8 | ||
| C. | 4 | D. | 不确定,与k值有关 |
6.已知正实数a、b、c满足$\frac{1}{e}≤\frac{c}{a}$≤2,clnb=a+clnc,其中e是自然对数的底数,则ln$\frac{b}{a}$的取值范围是( )
| A. | [1,+∞) | B. | $[{1,\frac{1}{2}+ln2}]$ | C. | (-∞,e-1] | D. | [1,e-1] |