题目内容
12.现有10道题,期中6道难题,4道简单题,张同学从中任选3道题解答.已知所取3道题中有2道难题,1道简单题.设张同学答对每道难题的概率都是$\frac{2}{5}$,答对每道简单题的概率都是$\frac{4}{5}$,且各题答对与否相互独立,用X表示张同学答对题的个数,求X的分布列和数学期望.分析 根据题意知X的所有可能取值,计算对应的概率值,写出随机变量X的分布列,再计算数学期望值.
解答 解:根据题意,X的所有可能取值0、1、2、3,
则$P(x=0)=C_2^0{(\frac{2}{5})^0}{(\frac{3}{5})^2}\frac{1}{5}=\frac{9}{125}$,
$P(x=1)=C_2^1{(\frac{2}{5})^1}{(\frac{3}{5})^1}\frac{1}{5}+C_2^0{(\frac{2}{5})^0}{(\frac{3}{5})^2}\frac{4}{5}=\frac{48}{125}$,
$P(x=2)=C_2^2{(\frac{2}{5})^2}{(\frac{3}{5})^0}\frac{1}{5}+C_2^1{(\frac{2}{5})^1}{(\frac{3}{5})^1}\frac{4}{5}=\frac{52}{125}$,
$P(x=3)=C_2^2{(\frac{2}{5})^2}{(\frac{3}{5})^0}\frac{4}{5}=\frac{16}{125}$;
所以随机变量X的分布列为:
| X | 0 | 1 | 2 | 3 |
| P | $\frac{9}{125}$ | $\frac{48}{125}$ | $\frac{52}{125}$ | $\frac{16}{125}$ |
点评 本题考查了离散型随机变量的分布列与数学期望的计算问题,是基础题.
练习册系列答案
相关题目
3.随机变量X的概率分布规律为P(X=n)=$\frac{a}{n(n+1)}$(n=1,2,3,4,…,10),中a是常数,则P($\frac{1}{2}$<X<$\frac{5}{2}$)的值为( )
| A. | $\frac{7}{15}$ | B. | $\frac{3}{5}$ | C. | $\frac{11}{15}$ | D. | $\frac{5}{6}$ |
1.二次函数y=x2-2x-2的单调减区间是( )
| A. | (1,+∞) | B. | (-∞,1) | C. | (0,1) | D. | (-1,0) |