题目内容

已知椭圆,的右焦点为F,上顶点为A,P为C1上任一点,圆心在y轴上的圆C2与斜率为的直线切于点B,且AF∥

(1)求圆的方程及椭圆的离心率。

(2)过P作圆C2的切线PE,PG,若的最小值为,求椭圆的方程。

解析(1)由圆心在y轴上的圆C2与斜率为1的直线切于点B,所以圆心在过B且垂直于的直线上,又圆心在y轴上,则圆心C2(0,3),

圆心到直线的距离,所以所求圆C2方程为:,又AF∥,所以有,即,椭圆的离心率为

(2)设

中,  ,由椭圆的几何性质有:

,所以有,因,所以

所以椭圆的方程为

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网