题目内容

19.在△ABC中,AC=5,$\frac{1}{tan\frac{A}{2}}$+$\frac{1}{tan\frac{C}{2}}$-$\frac{5}{tan\frac{B}{2}}$=0,则BC+AB=(  )
A.6B.7C.8D.9

分析 作△ABC的内切圆,设O为圆心,r为半径,圆O与三边AB、BC、AC的切点依次为D、E、F,连接OA、OB、OC、OD、OE、OF.则tan$\frac{B}{2}$=$\frac{r}{BD}$,tan$\frac{A}{2}$=$\frac{r}{AF}$,tan$\frac{C}{2}$=$\frac{r}{CF}$,再由已知条件求出AC=5BD,进一步求出BD的值,则BC+AB的答案可求.

解答 解:作△ABC的内切圆,设O为圆心,r为半径,圆O与三边AB、BC、AC的切点依次为D、E、F,连接OA、OB、OC、OD、OE、OF.
则tan$\frac{B}{2}$=$\frac{r}{BD}$,tan$\frac{A}{2}$=$\frac{r}{AF}$,tan$\frac{C}{2}$=$\frac{r}{CF}$.
∵$\frac{1}{tan\frac{A}{2}}$+$\frac{1}{tan\frac{C}{2}}$-$\frac{5}{tan\frac{B}{2}}$=0,
∴$\frac{AF}{r}+\frac{CF}{r}=\frac{5BD}{r}$,
∴AF+CF=5BD,即AC=5BD,
又∵AC=5,
∴BD=1,
∴BE=BD=1,
∴BC+AB=(BE+CE)+(BD+AD)=(CE+AD)+(BE+BD)=AC+2BD=7.
故选:B.

点评 本题考查了三角函数的化简求值,作出△ABC的内切圆是解本题的关键,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网