题目内容
已知数列{an}中,a1=
,an=2-
(n≥2),则a2008=( )
| 3 |
| 5 |
| 1 |
| an-1 |
分析:由a1=
,an=2-
(n≥2),可得a2=2-
=
,a3=2-
=-1,a4=2-
=3,a5=2-
=
,a6=2-
=
,a7=2-
=
,a8=2-
=
综上可得,an=
,把n=2008 代入可求
| 3 |
| 5 |
| 1 |
| an-1 |
| 1 |
| a1 |
| 1 |
| 3 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| a4 |
| 5 |
| 3 |
| 1 |
| a5 |
| 7 |
| 5 |
| 1 |
| a6 |
| 9 |
| 7 |
| 1 |
| a7 |
| 11 |
| 9 |
综上可得,an=
| 2n-5 |
| 2n-7 |
解答:解:∵a1=
,an=2-
(n≥2),
∴a2=2-
=2-
=
a3=2-
=2-3=-1
a4=2-
=2+1=3=
a5=2-
=2-
=
a6=2-
=2-
=
a7=2-
=2-
=
a8=2-
=2-
=
综上可得,an=
∴a2008=
=
故选D
| 3 |
| 5 |
| 1 |
| an-1 |
∴a2=2-
| 1 |
| a1 |
| 5 |
| 3 |
| 1 |
| 3 |
a3=2-
| 1 |
| a2 |
a4=2-
| 1 |
| a3 |
| 3 |
| 1 |
a5=2-
| 1 |
| a4 |
| 1 |
| 3 |
| 5 |
| 3 |
a6=2-
| 1 |
| a5 |
| 3 |
| 5 |
| 7 |
| 5 |
a7=2-
| 1 |
| a6 |
| 5 |
| 7 |
| 9 |
| 7 |
a8=2-
| 1 |
| a7 |
| 7 |
| 9 |
| 11 |
| 9 |
综上可得,an=
| 2n-5 |
| 2n-7 |
∴a2008=
| 2×2008-5 |
| 2×2008-7 |
| 4011 |
| 4099 |
故选D
点评:本题主要考查了由数列的递推公式求解数列的项,解题的关键是由数列的前几项的规律总结出数列的通项公式,注意归纳推理的应用.
练习册系列答案
相关题目
已知数列{an}中,a1=1,2nan+1=(n+1)an,则数列{an}的通项公式为( )
A、
| ||
B、
| ||
C、
| ||
D、
|