题目内容
已知数列an=1+
+
+…+
,则ak+1-ak共有( )
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n2 |
| A.1项 | B.k项 | C.2k项 | D.2k+1项 |
∵ak=1+
+
+…+
,ak+1=1+
+
+…+
+
+…+
,
∴ak+1-ak=
+…+
=
+
+…+
,
∴共有k2+2k+1-(k2+1)+1=2k+1项.
故选D.
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| k2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| k2 |
| 1 |
| k2+1 |
| 1 |
| (k+1)2 |
∴ak+1-ak=
| 1 |
| k2+1 |
| 1 |
| (k+1)2 |
| 1 |
| k2+1 |
| 1 |
| k2+2 |
| 1 |
| k2+2k+1 |
∴共有k2+2k+1-(k2+1)+1=2k+1项.
故选D.
练习册系列答案
相关题目