题目内容

在△ABC中,∠A、∠B、∠C所对的边长分别为a、b、c,设a、b、c满足条件b2+c2-bc=a2
c
b
=
1
2
+
3
,求∠A和tanB的值.
由b2+c2-bc=a2,根据余弦定理得cosA=
b2+c2-a2
2bc
=
bc
2bc
=
1
2
>0,则∠A=60°;
因此,在△ABC中,∠C=180°-∠A-∠B=120°-∠B.
由已知条件,应用正弦定理
1
2
+
3
=
c
b
=
sinC
sinB
=
sin(120°-B)
sinB
=
sin120°cosB-cos120°sinB
sinB
=
3
2
cotB+
1
2

解得cotB=2,从而tanB=
1
2

所以∠A=60°,tanB=
1
2
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网