题目内容
【答案】分析:先根据正态分布的意义,知三个电子元件的使用寿命超过1000小时的概率为
,而所求事件“该部件的使用寿命超过1000小时”当且仅当“超过1000小时时,元件1、元件2至少有一个正常”和“超过1000小时时,元件3正常”同时发生,由于其为独立事件,故分别求其概率再相乘即可
解答:解:三个电子元件的使用寿命均服从正态分布N(1000,502)
得:三个电子元件的使用寿命超过1000小时的概率为
设A={超过1000小时时,元件1、元件2至少有一个正常},B={超过1000小时时,元件3正常}
C={该部件的使用寿命超过1000小时}
则P(A)=
,P(B)=
P(C)=P(AB)=P(A)P(B)=
×
=
故答案为
点评:本题主要考查了正态分布的意义,独立事件同时发生的概率运算,对立事件的概率运算等基础知识,属基础题
解答:解:三个电子元件的使用寿命均服从正态分布N(1000,502)
得:三个电子元件的使用寿命超过1000小时的概率为
设A={超过1000小时时,元件1、元件2至少有一个正常},B={超过1000小时时,元件3正常}
C={该部件的使用寿命超过1000小时}
则P(A)=
P(C)=P(AB)=P(A)P(B)=
故答案为
点评:本题主要考查了正态分布的意义,独立事件同时发生的概率运算,对立事件的概率运算等基础知识,属基础题
练习册系列答案
相关题目