题目内容
在△ABC中,已知sinB+sinC=sinA(cosB+cosC).判断△ABC的形状为
直角三角形,且∠A=90°
直角三角形,且∠A=90°
.分析:先利用正弦定理化简已知的等式,然后再利用余弦定理表示出cosB及cosC,代入化简后的式子中,整理后根据b+c不为0,可得出b2+c2=a2,根据勾股定理的逆定理可得出三角形ABC为直角三角形.
解答:解:设A,B,C对边分别为a,b,c,
由sinB+sinC=sinA(cosB+cosC)得:b+c=a(cosB+cosC),
又cosB=
,cosC=
,
∴b+c=a(
+
),
整理得:(b+c)(b2+c2-a2)=0,
∵b+c≠0,∴b2+c2-a2=0,即b2+c2=a2,
则△ABC为直角三角形,且∠A=90°.
故答案为:直角三角形,且∠A=90°
由sinB+sinC=sinA(cosB+cosC)得:b+c=a(cosB+cosC),
又cosB=
| a2+c2-b2 |
| 2ac |
| a2+b2-c2 |
| 2ab |
∴b+c=a(
| a2+c2-b2 |
| 2ac |
| a2+b2-c2 |
| 2ab |
整理得:(b+c)(b2+c2-a2)=0,
∵b+c≠0,∴b2+c2-a2=0,即b2+c2=a2,
则△ABC为直角三角形,且∠A=90°.
故答案为:直角三角形,且∠A=90°
点评:此题考查了三角形形状的判断,涉及的知识有:正弦、余弦定理,以及勾股定理的逆定理,熟练掌握定理是解本题的关键.
练习册系列答案
相关题目
在△ABC中,已知|
|=4,|
|=1,S△ABC=
,则
•
的值为( )
| AB |
| AC |
| 3 |
| AB |
| AC |
| A、-2 | B、2 | C、±4 | D、±2 |