题目内容
已知函数f(x)=A.(-∞,-1]
B.[-1,2)
C.[-1,2]
D.[2,+∞)
【答案】分析:由题意可得只要满足直线y=x和射线y=2(x>m)有一个交点,而且直线y=x与函数f(x)=x2+4x+2的两个交点即可,画图便知,直线y=x与函数f(x)=x2+4x+2的图象的
两个交点为(-2,-2)(-1,-1),由此可得实数m的取值范围.
解答:
解:由题意可得射线y=x与函数f(x)=2(x>m)有且只有一个交点.
而直线y=x与函数f(x)=x2+4x+2,至多两个交点,
题目需要三个交点,则只要满足直线y=x与函数f(x)=x2+4x+2的图象有两个交点即可,
画图便知,y=x与函数f(x)=x2+4x+2的图象交点为A(-2,-2)、B(-1,-1),故有 m≥-1.
而当m≥2时,直线y=x和射线y=2(x>m)无交点,故实数m的取值范围是[-1,2),
故选B.
点评:本题主要考查函数与方程的综合应用,体现了转化、数形结合的数学思想,属于基础题.
两个交点为(-2,-2)(-1,-1),由此可得实数m的取值范围.
解答:
而直线y=x与函数f(x)=x2+4x+2,至多两个交点,
题目需要三个交点,则只要满足直线y=x与函数f(x)=x2+4x+2的图象有两个交点即可,
画图便知,y=x与函数f(x)=x2+4x+2的图象交点为A(-2,-2)、B(-1,-1),故有 m≥-1.
而当m≥2时,直线y=x和射线y=2(x>m)无交点,故实数m的取值范围是[-1,2),
故选B.
点评:本题主要考查函数与方程的综合应用,体现了转化、数形结合的数学思想,属于基础题.
练习册系列答案
相关题目
已知函数f(x)=x3的切线的斜率等于1,则这样的切线有( )
| A、1条 | B、2条 | C、3条 | D、不确定 |