题目内容

20.设行列式$|\begin{array}{l}{{a}_{11}}&{{a}_{12}}\\{{a}_{21}}&{{a}_{22}}\end{array}|=m,|\begin{array}{l}{{a}_{13}}&{{a}_{11}}\\{{a}_{23}}&{{a}_{21}}\end{array}|$=n,则行列式$|\begin{array}{l}{{a}_{11}}&{{a}_{12}+{a}_{13}}\\{{a}_{21}}&{{a}_{22}+{a}_{23}}\end{array}|$等于(  )
A.m+nB.-(m+n)C.n-mD.m-n

分析 利用二阶行列式展开法则进行求解.

解答 解:∵$|\begin{array}{l}{{a}_{11}}&{{a}_{12}}\\{{a}_{21}}&{{a}_{22}}\end{array}|=m,|\begin{array}{l}{{a}_{13}}&{{a}_{11}}\\{{a}_{23}}&{{a}_{21}}\end{array}|$=n,
∴m=a11a22-a21a12
n=a13a21-a23a11
∴$|\begin{array}{l}{{a}_{11}}&{{a}_{12}+{a}_{13}}\\{{a}_{21}}&{{a}_{22}+{a}_{23}}\end{array}|$=a11(a22+a23)-a21(a12+a13
=a11a22-a21a12-(a21a13-a23a11
=m-n.
故选:D.

点评 本题考查二阶行列式的计算,是基础题,解题时要注意二阶行列式展开法则的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网