题目内容
A B C D
答案:D
解析:间接法:.
(09年莱阳一中期末文)(12分)
我们用部分自然数构造如下的数表:用表示第行第个数为整数,使;每行中的其余各数分别等于其‘肩膀”上的两个数之和(第一、二行除外,如图),设第 (为正整数)行中各数之和为。
(1) 试写出并推测和的关系(无需证明);
(2) 证明数列是等比数列,并求数列的通项公式;
(3) 数列中是否存在不同的三项恰好成等差数列?若存在求出的关系;若不存在,请说明理由。
(本小题满分12分)
已知数列的各项排成如图所示的三角形数阵,数阵中每一行的第一个数构成等差数列,是的前n项和,且
( I )若数阵中从第三行开始每行中的数按从左到右的顺序均构成公比为正数的等比数列,且公比相等,已知,求的值;
(Ⅱ)设,求.
将字母a,a,b,b,c,c,排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有
(A)12种(B)18种(C)24种(D)36种
【解析】第一步先排第一列有,在排第二列,当第一列确定时,第二列有两种方法,如图,所以共有种,选A.