题目内容
平面内给定三个向量
=(3,2),
=(-1,2),
=(4,1)
(1)求|3
+
-2
|的值;
(2)若(
+k
)⊥(2
-
),求实数k的值.
| a |
| b |
| c |
(1)求|3
| a |
| b |
| c |
(2)若(
| a |
| c |
| b |
| a |
(1)由题意
=(3,2),
=(-1,2),
=(4,1)
∴3
+
-2
=(0,6)?|3
+
-2
|=6
(2)由题意得,
+k
=(4k+3,k+2),2
-
=(-5,2)
由(
+k
)⊥(2
-
)?-5(4k+3)+2(k+2)=0?k=-
.
| a |
| b |
| c |
∴3
| a |
| b |
| c |
| a |
| b |
| c |
(2)由题意得,
| a |
| c |
| b |
| a |
由(
| a |
| c |
| b |
| a |
| 11 |
| 18 |
练习册系列答案
相关题目