题目内容

在直角坐标系xOy中,曲线C1的参数方程为数学公式(α为参数)在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,曲线C2的方程为p(cosθ-sinθ)+1=0,则C1与C2的交点个数为________.

2
分析:先根据同角三角函数的关系消去参数α可求出曲线C1的普通方程,然后利用极坐标公式ρ2=x2+y2,x=ρcosθ,y=ρsinθ进行化简即可求出曲线C2普通方程,最后利用直角坐标方程判断C1与C2的交点个数即可.
解答:由曲线C2的方程为p(cosθ-sinθ)+1=0,∴x-y+1=0.即y=x+1;
将曲线C1的参数方程化为普通方程为
∴消去y整理得:7x2+8x-8=0.
△>0,∴此方程有两个不同的实根,
故C1与C2的交点个数为2.
故答案为2.
点评:本题主要考查椭圆的参数方程、简单曲线的极坐标方程,求直线与椭圆的交点个数,考查运算求解能力及转化的思想,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网