题目内容

设函数f(x)=|x-1|+|x-a|,
(1)若a=-1,解不等式f(x)≥3;
(2)如果x∈R,f(x)≥2,求a的取值范围.
分析:(1)当a=-1,原不等式变为:|x-1|+|x+1|≥3,下面利用对值几何意义求解,利用数轴上表示实数-
3
2
左侧的点与表示实数
3
2
右侧的点与表示实数-1与1的点距离之和不小3,从而得到不等式解集.
(2)欲求当x∈R,f(x)≥2,a的取值范围,先对a进行分类讨论:a=1;a<1;a>1.对后两种情形,只须求出f(x)的最小值,最后“x∈R,f(x)≥2”的充要条件是|a-1|≥2即可求得结果.
解答:解:(1)当a=-1时,f(x)=|x-1|+|x+1|,由f(x)≥3有|x-1|+|x+1|≥3
据绝对值几何意义求解,|x-1|+|x+1|≥3几何意义,是数轴上表示实数x的点距离实数1,-1表示的点距离之和不小3,
由于数轴上数-
3
2
左侧的点与数
3
2
右侧的点与数-1与1的距离之和不小3,
所以所求不等式解集为(-∞,-
3
2
]∪[
3
2
,+∞)
(2)由绝对值的几何意义知,数轴上到1的距离与到a的距离之和大于等于2恒成立,则1与a之间的距离必大于等于2,从而有a∈(-∞,-1]∪[3,+∞)
点评:本小题主要考查绝对值不等式、不等式的解法、充要条件等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想、分类讨论思想.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网