题目内容

已知f(x)=(x-1)2,g(x)=10(x-1),数列{aN}满足a1=2,(an+1-an)

g(an)+f(an)=0,bn=(N+2)(an-1).

(1)求证:数列{an-1}是等比数列.

(2)当N取何值时bn取最大值?请求出最大值.

(3)若对任意MN*恒成立,求实数t的取值范围.?

(1)证明:∵(an+1-an)g(an)+f(an)=0,f(an)=(an-1)2,g(an)=10(an-1),?

∴(an+1-an)×10(an-1)+(an-1)2=0,即(an-1)(10an+1-9an-1)=0.?

a1=2,可知对任何nN*,an-1≠0,?

an+1=an+.                                                                                                   ?

,?

∴{an-1}是以a1-1=1为首项,公比为的等比数列.                                               ?

(2)解:由(1)可知an-1=()n-1(nN*),?

bn= (n+2)(an-1)=(n+2)()n,?

 .                                                               ?

n=7时,=1,b8=b7;当n<7时,>1,bn+1bn;当n>7时,<1,bn+1bn.

∴当n=7或n=8时,bn取最大值,最大值为b7=b8=.                                         ?

(3)解:由,得Tm]<0.                                               (*)?

依题意,(*)式对任意mN*恒成立,?

①当T=0时,(*)式显然不成立,因此T=0不合题意.?                                    ?

②当T<0时,由>0,可知Tm<0(mN*),??

而当m是偶数时Tm>0,因此T<0不合题意.                                                         ?

③当T>0时,由Tm>0(mN*),?

<0.?

T(mN*).                                                                                       ?

h(m)= (mN*),?

∵(m+1)-h(m)= -=-·<0,?

h(1)>h(2)>…>h(m-1)>h(m)>….?

h(m)的最大值为h(1)=.∴实数T的取值范围是T.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网