题目内容
【题目】如图,梯形
中,
∥
,
,
,
,将△
沿对角线
折起,设折起后点
的位置为
,使二面角
为直二面角,给出下面四个命题:①
;②三棱锥
的体积为
;③
平面
;④平面
平面
;其中正确命题的个数是( )
![]()
A.1B.2C.3D.4
【答案】C
【解析】
取BD中点O,根据面面垂直性质定理得
平面
,再根据线面垂直判定与性质定理、面面垂直判定定理证得
平面
以及平面
平面
;利用锥体体积公式求三棱锥
的体积,最后根据反证法说明
不成立.
因为
,
,所以
为等腰直角三角形,
因为
∥
,
,
所以
,从而
为等腰直角三角形,![]()
取BD中点O,连接
,如图,
![]()
因为二面角
为直二面角,所以平面
平面
,
因为
为等腰直角三角形,所以
平面
平面
,
平面
,因此
平面
,所以三棱锥
的体积为
,②正确;
因为
平面
,
平面
,所以
,因为
,
,
平面
,所以
平面
;即③正确;
因为
平面
,
平面
;所以![]()
;由已知条件得![]()
,![]()
平面
,因此
平面
,因为
平面
,所以平面
平面
;即④正确;
如果
,而由
平面
,
平面
,所以
,因为
,
平面
,所以
平面
;因为
平面
;即
,与
矛盾,所以①不正确;
故选:C
练习册系列答案
相关题目
【题目】高三年级有500名学生,为了了解数学科的学习情况,现从中随机抽出若干名学生在一次测试中的数学成绩,制成如下频率分布表:
分组 | 频数 | 频率 |
| ① | ② |
| 0.050 | |
| 0.200 | |
| 12 | 0.300 |
| 0.275 | |
| 0.050 | |
合计 | ④ |
![]()
(1)根据上面图表,①②④处的数值分别为______,______,______;
(2)在所给的坐标系中画出
的频率分布直方图;
(3)根据题中信息估计总体平均数,并估计总体落在
中的概率.