题目内容
(2013•江苏一模)已知函数f(x)=
+
+
+
,则f(-
+
)+f(-
-
)=
| x |
| x+1 |
| x+1 |
| x+2 |
| x+2 |
| x+3 |
| x+3 |
| x+4 |
| 5 |
| 2 |
| 2 |
| 5 |
| 2 |
| 2 |
8
8
.分析:探究得到结论f(x)+f(-5-x)=8,利用之即可求得答案.
解答:解:∵f(x)=
+
+
+
,
∴f(-5-x)=
+
+
+
=
+
+
+
,
∴f(x)+f(-5-x)=[(
+
)+(
+
)+(
+
)+(
+
)]=8.
∵-
+
+(-
-
)=-5,
∴f(-
+
)+f(-
-
)=8.
故答案为:8.
| x |
| x+1 |
| x+1 |
| x+2 |
| x+2 |
| x+3 |
| x+3 |
| x+4 |
∴f(-5-x)=
| -5-x |
| -4-x |
| -4-x |
| -3-x |
| -3-x |
| -2-x |
| -2-x |
| -1-x |
=
| x+5 |
| x+4 |
| x+4 |
| x+3 |
| x+3 |
| x+2 |
| x+2 |
| x+1 |
∴f(x)+f(-5-x)=[(
| x |
| x+1 |
| x+2 |
| x+1 |
| x+1 |
| x+2 |
| x+3 |
| x+2 |
| x+2 |
| x+3 |
| x+4 |
| x+3 |
| x+3 |
| x+4 |
| x+5 |
| x+4 |
∵-
| 5 |
| 2 |
| 2 |
| 5 |
| 2 |
| 2 |
∴f(-
| 5 |
| 2 |
| 2 |
| 5 |
| 2 |
| 2 |
故答案为:8.
点评:本题考查函数的值,突出考查观察能力与运算能力,属于中档题.
练习册系列答案
相关题目