题目内容
等差数列{an}中,已知a1=
,a2+a5=4,an=33,则n为( )
| 1 |
| 3 |
| A.48 | B.49 | C.50 | D.51 |
设{an}的公差为d,
∵a1=
,a2+a5=4,
∴
+d+
+4d=4,即
+5d=4,
解得d=
.
∴an=
+
(n-1)=
n-
,
令an=33,
即
n-
=33,
解得n=50.
故选C.
∵a1=
| 1 |
| 3 |
∴
| 1 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3 |
解得d=
| 2 |
| 3 |
∴an=
| 1 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 1 |
| 3 |
令an=33,
即
| 2 |
| 3 |
| 1 |
| 3 |
解得n=50.
故选C.
练习册系列答案
相关题目