题目内容

设f(x)=x2-2ax+2,当x∈[-1,+∞)时,f(x)≥a恒成立,求a的取值范围.
f(x)=x2-2ax+2=(x-a)2+2-a2
f(x)图象的对称轴为x=a
为使f(x)≥a在[-1,+∞)上恒成立,
只需f(x)在[-1,?+∞)上的最小值比a大或等于a即可
∴(1)a≤-1时,f(-1)最小,解,解得-3≤a≤-1
  (2)a≥-1时,f(a)最小,解
a≥-1
f(a)=2-a2≥a

解得-1≤a≤1
综上所述-3≤a≤1
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网