题目内容
已知命题p:“
x∈[1,2],x2﹣a≥0”,命题q:“
x0∈R,x02+2ax0+2﹣a=0”,若命题“p且q”是真命题,求实数a的取值范围.
解:由“p且q”是真命题,则p为真命题,q也为真命题.
若p为真命题,a≤x2恒成立,
∵x∈[1,2], ∴a≤1 ①;
若q为真命题,即x2+2ax+2﹣a=0有实根,
△=4a2﹣4(2﹣a)≥0,即a≥1或a≤﹣2 ②,
对①②求交集,可得{a|a≤﹣2或a=1},
综上所求实数a的取值范围为a≤﹣2或a=1.
若p为真命题,a≤x2恒成立,
∵x∈[1,2], ∴a≤1 ①;
若q为真命题,即x2+2ax+2﹣a=0有实根,
△=4a2﹣4(2﹣a)≥0,即a≥1或a≤﹣2 ②,
对①②求交集,可得{a|a≤﹣2或a=1},
综上所求实数a的取值范围为a≤﹣2或a=1.
练习册系列答案
相关题目
已知命题p:?x∈R,2x2+2x+
<0;命题q:?x∈R,sinx-cosx=
.则下列判断正确的是( )
| 1 |
| 2 |
| 2 |
| A、p是真命题 |
| B、q是假命题 |
| C、¬P是假命题 |
| D、¬q是假命题 |