题目内容
顶点在原点,焦点在轴上,截直线所得弦长为的抛物线方程为____________________.
顶点在原点,焦点在轴上的抛物线,截直线所得的弦长为,求抛物线的方程。
已知顶点在原点,焦点在轴上的抛物线过点.
(1)求抛物线的标准方程;
(2)若抛物线与直线交于、两点,求证:.
已知抛物线的顶点在原点,焦点在轴上,抛物线上的点到焦点的距离为4,则的值为( )
A.4 B.-2 C.4或-4 D.12或-2
(本小题12分)
已知顶点在原点,焦点在轴上的抛物线与直线交于P、Q两点,|PQ|=,求抛物线的方程
已知顶点在原点,焦点在轴上的抛物线被直线截得的弦长为,(1)求抛物线的方程;(2)若抛物线与直线无公共点,试在抛物线上求一点,使这点到直线的距离最短。