题目内容

14.已知函数f(x)=ex-1,g(x)=-x2+4x-3,若f(a)=g(b),则b的取值范围是(  )
A.$[2-\sqrt{2},2+\sqrt{2}]$B.$(2-\sqrt{2},2+\sqrt{2})$C.[1,3]D.(1,3)

分析 根据函数的单调性求出函数f(x)的值域,从而得到g(b)的取值范围,解一元二次不等式即可求出所求.

解答 解:∵f(x)=ex-1,在R上递增
∴f(a)>-1,则g(b)>-1
∴-b2+4b-3>-1即b2-4b+2<0,
解得b∈(2-$\sqrt{2}$,2+$\sqrt{2}$),
故选:B.

点评 本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网