题目内容
【题目】某观测站
在目标
的南偏西
方向,从
出发有一条南偏东
走向的公路,在
处测得与
相距
的公路
处有一个人正沿着此公路向
走去,走
到达
,此时测得
距离为
,若此人必须在
分钟内从
处到达
处,则此人的最小速度为( )
![]()
A.
B.
C.
D. ![]()
【答案】B
【解析】由已知得∠CAB=25°+35°=60°,BC=31,CD=21,BD=20,可得
,那么
,
于是在△ABC中,
=24,
在△ABC中,BC2=AC2+AB2-2AC·ABcos60°,即312=242+AB2-24AB,解得AB=35或AB=-11(舍去),因此AD=AB-BD=35-20=15.
故此人在D处距A处还有15 km,若此人必须在20分钟,即
小时内从D处到达A处,则其最小速度为15÷
=45(km/h).
故选B.
【题目】在直角坐标系
中,曲线
的参数方程为
’(
为参数).以坐标原点为极点,
轴正半轴为极轴建立极坐标系,直线
的极坐标方程为
.
(1)求
和
的直角坐标方程;
(2)已知直线
与
轴交于点
,且与曲线
交于
,
两点,求
的值.
【题目】近年来全国各一、二线城市打击投机购房,陆续出台了住房限购令.某市为了进一步了解已购房民众对市政府出台楼市限购令的认同情况,随机抽取了一小区住户进行调查,各户人均月收入(单位:千元)的频数分布及赞成楼市限购令的户数如下表:
人均月收入 |
|
|
|
|
|
|
频数 | 6 | 10 | 13 | 11 | 8 | 2 |
赞成户数 | 5 | 9 | 12 | 9 | 4 | 1 |
若将小区人均月收入不低于7.5千元的住户称为“高收入户”,人均月收入低于7.5千元的住户称为“非高收入户”
非高收入户 | 高收入户 | 总计 | |
赞成 | |||
不赞成 | |||
总计 |
(Ⅰ)求“非高收入户”在本次抽样调杳中的所占比例;
(Ⅱ)现从月收入在
的住户中随机抽取两户,求所抽取的两户都赞成楼市限购令的概率;
(Ⅲ)根据已知条件完成如图所给的
列联表,并说明能否在犯错误的概率不超过0.005的前提下认为“收入的高低”与“赞成楼市限购令”有关.
附:临界值表
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式:
,
.