题目内容
数列{an}满足a1=1且8an+1an-16an+1+2an+5=0(n≥1).记bn=
(n≥1).
(Ⅰ)求b1、b2、b3、b4的值;
(Ⅱ)求数列{bn}的通项公式及数列{anbn}的前n项和Sn.
| 1 | ||
an-
|
(Ⅰ)求b1、b2、b3、b4的值;
(Ⅱ)求数列{bn}的通项公式及数列{anbn}的前n项和Sn.
法一:
(I)a1=1,故b1=
=2;a2=
,
故b2=
=
;a3=
,
故b3=
=4;a4=
,
故b4=
.
(II)因(b1-
)(b3-
)=
×
=(
)2,(b2-
)2=(
)2,(b1-
)(b3-
)=(b2-
)2
故猜想{bn-
}是首项为
,公比q=2的等比数列.
因an≠2,(否则将an=2代入递推公式会导致矛盾)故an+1=
(n≥1).
因bn+1-
=
-
=
-
=
,
2(bn-
)=
-
=
=bn+1-
,b1-
≠0,
故|bn-
|确是公比为q=2的等比数列.
因b1-
=
,故bn-
=
•2n,bn=
•2n+
(n≥1),
由bn=
得anbn=
bn+1,
故Sn=a1b1+a2b2+…+anbn=
(b1+b2++bn)+n=
+
n=
(2n+5n-1)
法二:
(Ⅰ)由bn=
得an=
+
,代入递推关系8an+1an-16an+1+2an+5=0,
整理得
-
+
=0,即bn+1=2bn-
,
由a1=1,有b1=2,所以b2=
,b3=4,b4=
.
(Ⅱ)由bn+1=2bn-
,bn+1-
=2(bn-
),b1-
=
≠0,
所以{bn-
}是首项为
,公比q=2的等比数列,
故bn-
=
•2n,即bn=
•2n+
(n≥1).
由bn=
,得anbn=
bn+1,
故Sn=a1b1+a2b2+…+anbn=
(b1+b2++bn)+n=
+
n=
(2n+5n-1).
法三:
(Ⅰ)同解法一
(Ⅱ)b2-b1=
,b3-b2=
,b4-b3=
,
×
=(
)2猜想{bn+1-bn}是首项为
,
公比q=2的等比数列,bn+1-bn=
•2n
又因an≠2,故an+1=
(n≥1).
因此bn+1-bn=
-
=
-
=
-
=
;
bn+2-bn+1=
-
=
-
=
-
=
=2(bn+1-bn).
因b2-b1=
≠0,{bn+1-bn}是公比q=2的等比数列,bn+1-bn=
•2n,
从而bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1
=
(2n-1+2n-2++21)+2
=
(2n-2)+2
=
•2n+
(n≥1).
由bn=
得anbn=
bn+1,
故Sn=a1b1+a2b2+…+anbn=
(b1+b2++bn)+n=
+
n=
(2n+5n-1).
(I)a1=1,故b1=
| 1 | ||
1-
|
| 7 |
| 8 |
故b2=
| 1 | ||||
|
| 8 |
| 3 |
| 3 |
| 4 |
故b3=
| 1 | ||||
|
| 13 |
| 20 |
故b4=
| 20 |
| 3 |
(II)因(b1-
| 4 |
| 3 |
| 4 |
| 3 |
| 2 |
| 3 |
| 8 |
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
故猜想{bn-
| 4 |
| 3 |
| 2 |
| 3 |
因an≠2,(否则将an=2代入递推公式会导致矛盾)故an+1=
| 5+2a |
| 16-8an |
因bn+1-
| 4 |
| 3 |
| 1 | ||
an+1-
|
| 4 |
| 3 |
| 16-8an |
| 6an-3 |
| 4 |
| 3 |
| 20-16an |
| 6an-3 |
2(bn-
| 4 |
| 3 |
| 2 | ||
an-
|
| 8 |
| 3 |
| 20-16an |
| 6an-3 |
| 4 |
| 3 |
| 4 |
| 3 |
故|bn-
| 4 |
| 3 |
因b1-
| 4 |
| 3 |
| 2 |
| 3 |
| 4 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 4 |
| 3 |
由bn=
| 1 | ||
an-
|
| 1 |
| 2 |
故Sn=a1b1+a2b2+…+anbn=
| 1 |
| 2 |
| ||
| 1-2 |
| 5 |
| 3 |
| 1 |
| 3 |
法二:
(Ⅰ)由bn=
| 1 | ||
an-
|
| 1 |
| bn |
| 1 |
| 2 |
整理得
| 4 |
| bn+1bn |
| 6 |
| bn+1 |
| 3 |
| bn |
| 4 |
| 3 |
由a1=1,有b1=2,所以b2=
| 8 |
| 3 |
| 20 |
| 3 |
(Ⅱ)由bn+1=2bn-
| 4 |
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
| 2 |
| 3 |
所以{bn-
| 4 |
| 3 |
| 2 |
| 3 |
故bn-
| 4 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 4 |
| 3 |
由bn=
| 1 | ||
an-
|
| 1 |
| 2 |
故Sn=a1b1+a2b2+…+anbn=
| 1 |
| 2 |
| ||
| 1-2 |
| 5 |
| 3 |
| 1 |
| 3 |
法三:
(Ⅰ)同解法一
(Ⅱ)b2-b1=
| 2 |
| 3 |
| 4 |
| 3 |
| 8 |
| 3 |
| 2 |
| 3 |
| 8 |
| 3 |
| 4 |
| 3 |
| 2 |
| 3 |
公比q=2的等比数列,bn+1-bn=
| 1 |
| 3 |
又因an≠2,故an+1=
| 5+2an |
| 16-8an |
因此bn+1-bn=
| 1 | ||
an+1-
|
| 1 | ||
an-
|
| 1 | ||||
|
| 2 |
| 2an-1 |
| 16-8an |
| 6an-3 |
| 6 |
| 6an-3 |
| 10-8an |
| 6an-3 |
bn+2-bn+1=
| 1 | ||
an+2-
|
| 1 | ||
an+1-
|
| 16-8an+1 |
| 6an+1-3 |
| 16-8an |
| 6an-3 |
| 36-24an |
| 6an-3 |
| 16-8an |
| 6an-3 |
| 20-16an |
| 6an-3 |
因b2-b1=
| 2 |
| 3 |
| 1 |
| 3 |
从而bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1
=
| 1 |
| 3 |
=
| 1 |
| 3 |
=
| 1 |
| 3 |
| 4 |
| 3 |
由bn=
| 1 | ||
an-
|
| 1 |
| 2 |
故Sn=a1b1+a2b2+…+anbn=
| 1 |
| 2 |
| ||
| 1-2 |
| 5 |
| 3 |
| 1 |
| 3 |
练习册系列答案
相关题目