ÌâÄ¿ÄÚÈÝ
ijУÉè¼ÆÁËÒ»¸öÊÔÑé¹ý¹ØÄÜÁ¦±ÈÈüµÄ·½°¸£¬¹æ¶¨£º¿¼Éú´Ó6µÀ±¸Ñ¡ÌâÖÐÒ»´ÎÐÔËæ»ú³éÈ¡3Ì⣬ÇÒ·Ö±ð°´ÕÕÌâĿҪÇó¶ÀÁ¢Íê³É£¬ÖÁÉÙÕýÈ·Íê³ÉÆäÖÐ2ÌâµÄ²ÅÄܹý¹Ø£¬ÒÑÖª6µÀ±¸Ñ¡ÌâÖп¼Éú¼×ÓÐ4ÌâÄÜÕýÈ·Íê³É£¬2Ìâ²»ÄÜÍê³É£»¿¼ÉúÒÒÿÌâÕýÈ·Íê³ÉµÄ¸ÅÂʶ¼ÊÇ
£¬ÇÒÿÌâÕýÈ·Íê³ÉÓë·ñ»¥²»Ó°Ï죮
£¨1£©·Ö±ðд³ö¼×¡¢ÒÒÁ½¿¼ÉúÕýÈ·Íê³ÉÌâÊýµÄ¸ÅÂÊ·Ö²¼ÁУ¬²¢¼ÆËãÊýѧÆÚÍû£»
£¨2£©ÊÔÓÃͳ¼ÆÖªÊ¶·ÖÎö±È½ÏÁ½¿¼Éú£¬ËµÄʵÑé²Ù×÷ÄÜÁ¦Îȶ¨ÐÔÇ¿£¬Í¨¹ýµÄ¿ÉÄÜÐÔ´ó£¿
| 2 | 3 |
£¨1£©·Ö±ðд³ö¼×¡¢ÒÒÁ½¿¼ÉúÕýÈ·Íê³ÉÌâÊýµÄ¸ÅÂÊ·Ö²¼ÁУ¬²¢¼ÆËãÊýѧÆÚÍû£»
£¨2£©ÊÔÓÃͳ¼ÆÖªÊ¶·ÖÎö±È½ÏÁ½¿¼Éú£¬ËµÄʵÑé²Ù×÷ÄÜÁ¦Îȶ¨ÐÔÇ¿£¬Í¨¹ýµÄ¿ÉÄÜÐÔ´ó£¿
·ÖÎö£º£¨1£©Éè¼×¡¢ÒÒÁ½¿¼ÉúÕýÈ·Íê³ÉÌâÊý·Ö±ðΪx1ºÍx2£®ÓÉx1=1£¬2£¬3£¬P(x1=1)=
=
£¬P£¨x1=2£©=
=
£¬P£¨x1=3£©=
=
£¬ÓÉ´ËÄÜÇó³ö¼×¿¼ÉúÕýÈ·Íê³ÉÌâÊýx1µÄ¸ÅÂÊ·Ö²¼ÁУ»x2=0£¬1£¬2£¬3£¬ÇÒP(x2=0)=(1-
)3=
£¬P£¨x2=1£©=
•
•(1-
)2=
£¬P(x2=2)=
•(
)2•(1-
)=
£¬P(x2=3)=(
)3=
£¬ÓÉ´ËÄÜÇó³öÒÒ¿¼ÉúÕýÈ·Íê³ÉÌâÊýx2µÄ¸ÅÂÊ·Ö²¼ÁУ®
£¨2£©·Ö±ðÇó³öEx1ºÍEx2£¬Dx1ºÍDx2£¬ÓÉEx1=Ex2£¬Öª¼×¡¢ÒÒÁ½¿¼ÉúÕýÈ·Íê³ÉÌâÊýµÄƽ¾ùȡֵÏàͬ£®ÓÉDx1£¼Dx2£¬Öªx1µÄȡֵ±Èx2µÄȡֵÏà¶Ô¼¯ÖÐÓÚ¾ùÖµ2µÄÖÜΧ£¬Òò´Ë¼×ÉúµÄʵ¼Ê²Ù×÷ÄÜÁ¦±ÈÒÒÉúÇ¿£®
| ||
|
| 1 |
| 5 |
| ||||
|
| 3 |
| 5 |
| ||
|
| 1 |
| 5 |
| 2 |
| 3 |
| 1 |
| 27 |
| C | 1 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 9 |
| C | 2 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 4 |
| 9 |
| 2 |
| 3 |
| 8 |
| 27 |
£¨2£©·Ö±ðÇó³öEx1ºÍEx2£¬Dx1ºÍDx2£¬ÓÉEx1=Ex2£¬Öª¼×¡¢ÒÒÁ½¿¼ÉúÕýÈ·Íê³ÉÌâÊýµÄƽ¾ùȡֵÏàͬ£®ÓÉDx1£¼Dx2£¬Öªx1µÄȡֵ±Èx2µÄȡֵÏà¶Ô¼¯ÖÐÓÚ¾ùÖµ2µÄÖÜΧ£¬Òò´Ë¼×ÉúµÄʵ¼Ê²Ù×÷ÄÜÁ¦±ÈÒÒÉúÇ¿£®
½â´ð£º£¨1£©Éè¼×¡¢ÒÒÁ½¿¼ÉúÕýÈ·Íê³ÉÌâÊý·Ö±ðΪx1ºÍx2£®
¡ßx1=1£¬2£¬3£¬
P(x1=1)=
=
£¬
P£¨x1=2£©=
=
£¬
P£¨x1=3£©=
=
£¬
¡à¼×¿¼ÉúÕýÈ·Íê³ÉÌâÊýx1µÄ¸ÅÂÊ·Ö²¼ÁÐΪ
¡ßx2=0£¬1£¬2£¬3£¬ÇÒP(x2=0)=(1-
)3=
£¬
P£¨x2=1£©=
•
•(1-
)2=
£¬
P(x2=2)=
•(
)2•(1-
)=
£¬
P(x2=3)=(
)3=
£¬
¡àÒÒ¿¼ÉúÕýÈ·Íê³ÉÌâÊýx2µÄ¸ÅÂÊ·Ö²¼ÁÐΪ£º
£¨2£©¡ßEx1=1¡Á
+2¡Á
+3¡Á
=2£¬
Ex2=0¡Á
+1¡Á
+2¡Á
+3¡Á
=2£¬
¡àEx1=Ex2£¬Õâ±íÃ÷¼×¡¢ÒÒÁ½¿¼ÉúÕýÈ·Íê³ÉÌâÊýµÄƽ¾ùȡֵÏàͬ£®
¡ßDx1=(1-2)2¡Á
+(2-2)2¡Á
+(3-2)2¡Á
=
£¬
Dx2=(0-2)2¡Á
+(1-2)2¡Á
+(2-2)2¡Á
+(3-2)2¡Á
=
£¬
¡àDx1£¼Dx2£¬Õâ±íÃ÷x1µÄȡֵ±Èx2µÄȡֵÏà¶Ô¼¯ÖÐÓÚ¾ùÖµ2µÄÖÜΧ£¬
Òò´Ë¼×ÉúµÄʵ¼Ê²Ù×÷ÄÜÁ¦±ÈÒÒÉúÇ¿£®
¡ßx1=1£¬2£¬3£¬
P(x1=1)=
| ||
|
| 1 |
| 5 |
P£¨x1=2£©=
| ||||
|
| 3 |
| 5 |
P£¨x1=3£©=
| ||
|
| 1 |
| 5 |
¡à¼×¿¼ÉúÕýÈ·Íê³ÉÌâÊýx1µÄ¸ÅÂÊ·Ö²¼ÁÐΪ
| x1 | 1 | 2 | 3 | ||||||
| P |
|
|
|
| 2 |
| 3 |
| 1 |
| 27 |
P£¨x2=1£©=
| C | 1 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 9 |
P(x2=2)=
| C | 2 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 4 |
| 9 |
P(x2=3)=(
| 2 |
| 3 |
| 8 |
| 27 |
¡àÒÒ¿¼ÉúÕýÈ·Íê³ÉÌâÊýx2µÄ¸ÅÂÊ·Ö²¼ÁÐΪ£º
| x2 | 0 | 1 | 2 | 3 | ||||||||
| P |
|
|
|
|
| 1 |
| 5 |
| 3 |
| 5 |
| 1 |
| 5 |
Ex2=0¡Á
| 1 |
| 27 |
| 2 |
| 9 |
| 4 |
| 9 |
| 8 |
| 27 |
¡àEx1=Ex2£¬Õâ±íÃ÷¼×¡¢ÒÒÁ½¿¼ÉúÕýÈ·Íê³ÉÌâÊýµÄƽ¾ùȡֵÏàͬ£®
¡ßDx1=(1-2)2¡Á
| 1 |
| 5 |
| 3 |
| 5 |
| 1 |
| 5 |
| 2 |
| 5 |
Dx2=(0-2)2¡Á
| 1 |
| 27 |
| 2 |
| 9 |
| 4 |
| 9 |
| 8 |
| 27 |
| 2 |
| 3 |
¡àDx1£¼Dx2£¬Õâ±íÃ÷x1µÄȡֵ±Èx2µÄȡֵÏà¶Ô¼¯ÖÐÓÚ¾ùÖµ2µÄÖÜΧ£¬
Òò´Ë¼×ÉúµÄʵ¼Ê²Ù×÷ÄÜÁ¦±ÈÒÒÉúÇ¿£®
µãÆÀ£º±¾Ì⿼²é¸ÅÂʵļÆËãºÍ·Ö²¼ÁеÄÇ󷨣¬¿¼²éÀûÓÃÊýѧÆÚÍûºÍ·½²î·ÖÎö±È½Ï¼×¡¢ÒÒÁ½¿¼ÉúµÄʵÑé²Ù×÷ÄÜÁ¦£®½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÊýѧÆÚÍûºÍ·½²îÔÚʵ¼ÊÎÊÌâÖеÄÁé»îÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿