题目内容
已知各项均为正数的等比数列{an}满足a7=a6+2a5,若存在两项am,an使得
=4a1,则
+
的最小值为( )
| aman |
| 1 |
| m |
| 4 |
| n |
A.
| B.
| C.
| D.
|
由各项均为正数的等比数列{an}满足 a7=a6+2a5,可得 a1q6=a1q5+2a1q4,∴q2-q-2=0,∴q=2.
∵
=4a1,∴qm+n-2=16,∴2m+n-2=24,∴m+n=6,
∴
+
=
(m+n)(
+
)=
(5+
+
)≥
(5+4)=
,当且仅当
=
时,等号成立.
故
+
的最小值等于
,
故选A.
∵
| aman |
∴
| 1 |
| m |
| 4 |
| n |
| 1 |
| 6 |
| 1 |
| m |
| 4 |
| n |
| 1 |
| 6 |
| n |
| m |
| 4m |
| n |
| 1 |
| 6 |
| 3 |
| 2 |
| n |
| m |
| 4m |
| n |
故
| 1 |
| m |
| 4 |
| n |
| 3 |
| 2 |
故选A.
练习册系列答案
相关题目