题目内容
【题目】已知x、y满足约束条件
,若目标函数z=ax+by(a>0,b>0)的最大值为7,则
的最小值为 .
【答案】7
【解析】解:作出不等式组
表示的平面区域,
得到如图的△ABC及其内部,其中A(1,0),B(3,4),C(0,1)
设z=F(x,y)=ax+by(a>0,b>0),
将直线l:z=ax+by进行平移,并观察直线l在x轴上的截距变化,
可得当l经过点B时,目标函数z达到最大值.
∴zmax=F(3,4)=7,即3a+4b=7.
因此,
=
(3a+4b)(
)=
[25+12(
)],
∵a>0,b>0,可得
≥2
=2,
∴
≥
(25+12×2)=7,当且仅当a=b=1时,
的最小值为7.
所以答案是:7![]()
【考点精析】本题主要考查了基本不等式在最值问题中的应用的相关知识点,需要掌握用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”才能正确解答此题.
练习册系列答案
相关题目
【题目】为了解学生寒假阅读名著的情况,一名教师对某班级的所有学生进行了调查,调查结果如下表:
本数 | 0 | 1 | 2 | 3 | 4 | 5 |
男生 | 0 | 1 | 4 | 3 | 2 | 2 |
女生 | 0 | 0 | 1 | 3 | 3 | 1 |
(I)从这班学生中任选一名男生,一名女生,求这两名学生阅读名著本数之和为4的概率;
(II)若从阅读名著不少于4本的学生中任选4人,设选到的男学生人数为 X,求随机变量 X的分布列和数学期望;
(III)试判断男学生阅读名著本数的方差
与女学生阅读名著本数的方差
的大小(只需写出结论).