题目内容
已知定义在R上的可导函数f(x)的导函数为f′(x),满足f′(x)<f(x),且f(x+2)为偶函数,f(4)=1,则不等式f(x)<ex的解集为( )
(A)(-2,+∞) (B)(0,+∞)
(C)(1,+∞) (D)(4,+∞)
B
【解析】因为f(x+2)为偶函数,
所以f(2-x)=f(x+2),因此f(0)=f(4)=1.
令h(x)=
,则原不等式即为h(x)<h(0).
又h'(x)=
=
,
依题意f'(x)<f(x),故h'(x)<0,因此函数h(x)在R上是减函数,所以由h(x)<h(0)得x>0.
练习册系列答案
相关题目