题目内容

在三棱柱ABC-A1B1C1中,底面△ABC为正三角形且边长为
3
a,侧棱AA1=2a,点A在下底面的射影是△A1B1C1的中心O.
(Ⅰ)求证:AA1⊥B1C1
(Ⅱ)求二面角B1-AA1-C1所成角的余弦值.
考点:二面角的平面角及求法,空间中直线与直线之间的位置关系
专题:空间位置关系与距离,空间角
分析:(Ⅰ)由已知得B1C1⊥A1O,AO⊥B1C1,由此能证明B1C1⊥面A1AO,从而得到B1C1⊥AA1
(Ⅱ)过B1作B1D⊥AA1,交AA1于D,连结DC1,由已知得∠B1DC1是二面角B1-AA1-C1的平面角,由此能求出二面角B1-AA1-C1所成角的余弦值.
解答: (Ⅰ)证明:∵A在底面△A1B1C1上射影是下底面正△A1B1C1的中心O,
∴B1C1⊥A1O,又AO⊥平面A1B1C1
∴AO⊥B1C1
∴B1C1和两相交直线AO,A1O均垂直,
∴B1C1⊥面A1AO,
又AA1?面A1AO,∴B1C1⊥AA1
(Ⅱ)解:过B1作B1D⊥AA1,交AA1于D,连结DC1
∵AA1⊥B1C1,AA1⊥DB1
∴AA1⊥面DB1C1,∴AA1⊥DC1
∴∠B1DC1是二面角B1-AA1-C1的平面角,
又A在底面A1B1C1上的投影是△A1B1C1的中心,
∴AA1=AB1=2a,
在△AA1B1中,由AA1=AB1=2a,A1B1=
3
a

由面积法知:B1D=
3
a•
13
2
a
2a
=
39
4
a
,同理DC1=
39
4
a

在△C1DB1中,由余弦定理得cos∠B1DC1=
39
16
+
39
16
-3
2•
39
4
39
4
=
5
13

∴二面角B1-AA1-C1所成角的余弦值为
5
13
点评:本题考查异面直线垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要注意空间思维能力的培养.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网