搜索
题目内容
设点
P
在直线
AB
上并且
(λ≠-1),
O
为空间上任一点.
求证:
试题答案
相关练习册答案
证明:∵
∴由从
,得
∵λ≠-1,∴
练习册系列答案
西城学科专项测试系列答案
小考必做系列答案
小考实战系列答案
小考复习精要系列答案
小考总动员系列答案
小升初必备冲刺48天系列答案
68所名校图书小升初高分夺冠真卷系列答案
伴你成长周周练月月测系列答案
小升初金卷导练系列答案
萌齐小升初强化模拟训练系列答案
相关题目
如图,在四棱锥P-ABCD中,底面ABCD为正方形,PA⊥底面ABCD,PA=AD=2,E是棱PC的中点.
(Ⅰ)设点G在棱AB上,当点G在何处时,可使直线GE⊥平面PCD,并证明你的结论;
(Ⅱ)求直线AC与平面ADE所成角的大小.
已知定直线l:x=1和定点M(t,0)(t∈R),动点P到M的距离等于点P到直线l距离的2倍.
(1)求动点P的轨迹方程,并讨论它表示什么曲线;
(2)当t=4时,设点P的轨迹为曲线C,过点M作倾斜角为θ(θ>0)的直线交曲线C于A、B两点,直线l与x轴交于点N.若点N恰好落在以线段AB为直径的圆上,求θ的值.
(2008•普陀区二模)已知点E,F的坐标分别是(-2,0)、(2,0),直线EP,FP相交于点P,且它们的斜率之积为
-
1
4
.
(1)求证:点P的轨迹在椭圆
C:
x
2
4
+
y
2
=1
上;
(2)设过原点O的直线AB交(1)题中的椭圆C于点A、B,定点M的坐标为
(1,
1
2
)
,试求△MAB面积的最大值,并求此时直线AB的斜率k
AB
;
(3)某同学由(2)题结论为特例作推广,得到如下猜想:
设点M(a,b)(ab≠0)为椭圆
C:
x
2
4
+
y
2
=1
内一点,过椭圆C中心的直线AB与椭圆分别交于A、B两点.则当且仅当k
OM
=-k
AB
时,△MAB的面积取得最大值.
问:此猜想是否正确?若正确,试证明之;若不正确,请说明理由.
如图,在四棱锥P-ABCD中,底面ABCD为正方形,PA⊥底面ABCD,PA=AD=2,E是棱PC的中点.
(Ⅰ)设点G在棱AB上,当点G在何处时,可使直线GE⊥平面PCD,并证明你的结论;
(Ⅱ)求直线AC与平面ADE所成角的大小.
如图,在四棱锥P-ABCD中,底面ABCD为正方形,PA⊥底面ABCD,PA=AD=2,E是棱PC的中点.
(Ⅰ)设点G在棱AB上,当点G在何处时,可使直线GE⊥平面PCD,并证明你的结论;
(Ⅱ)求直线AC与平面ADE所成角的大小.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案