题目内容

若f(x)是在(-l,l)内的可导奇函数,且f′(x)不恒为0,则f′(x)(  )
A.必为(-l,l)内的奇函数
B.必为(-l,l)内的偶函数
C.必为(-l,l)内的非奇非偶函数
D.可能为奇函数也可能为偶函数
证明:对任意 x∈(-1,1),f′(-x)=
lim
△x→0
f(-x+△x)-f(-x)
△x
=
lim
△x→0
f[-(x-△x)]-f(-x)
△x

由于f(x)为奇函数,∴f[-(x-△x)]=-f(x-△x),f(-x)=-f(x),
于是 f′(-x)=f′(-x)=
lim
△x→0
-f(x-△x)+f(x)
△x
=
lim
△x→0
f(x-△x)-f(x)
-△x
=f′(x)

因此f′(-x)=f′(x)即f′(x)是(-1,1)内的偶函数.
故选B.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网