题目内容

一个口袋中装有大小相同的2个白球和3个黑球.
(1)采取放回抽样方式,从中摸出两个球,求两球恰好颜色不同的概率;
(2)采取不放回抽样方式,从中摸出两个球,求摸得白球的个数的分布列与期望.

解:(1)采取放回抽样方式,从中摸出两个球,两球恰好颜色不同,也就是说从5个球中摸出一球,若第一次摸到白球,则第二次摸到黑球;若第一次摸到黑球,则第二次摸到白球.
因此它的概率P是:
(2)设摸得白球的个数为ξ,则ξ=0,1,2.
ξ的分布列为:

ξ012
P



分析:(1)采取放回抽样方式,从中摸出两个球,两球恰好颜色不同,也就是说从5个球中摸出一球,若第一次摸到白球,则第二次摸到黑球;若第一次摸到黑球,则第二次摸到白球,由此可求概率;
(2)设摸得白球的个数为ξ,则ξ=0,1,2,求出相应的概率,可得ξ的分布列与期望.
点评:本题考查互斥事件的概率,考查离散型随机事件的分布列与期望,确定变量的取值,计算相应的概率是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网